Profiling of lung microbiota in the patients with obstructive sleep apnea.

Medicine. 2018;97(26):e11175

Plain language summary

Obstructive sleep apnoea is a disease of lower airways of the lungs. Numerous studies have reported that various commensal bacteria such as Streptococcus, Veillonella, Prevotella, and Actinomyces are predominant in healthy human lungs. Therefore the current study was designed to analyse and assess the lower airway microbiota in patients with Obstructive sleep apnoea (OSA) and compared it to that of control group (who did not have OSA but had other lung disease). Sleep apnoea was examined with a sleep diagnostic device and data were analysed with Profusion PSG software. The study was conducted in China and total number of subjects who took part in the study was 19. On comparison between the two groups revealed that, Fusobacteria species of bacteria was higher in OSA patients whilst firmicutes species was significantly less. The result from the study indicated that lung microbiota in OSA patients were different from those of control group(non OSA )patients and maybe manipulation of the microbiota could be considered as an intervention to increase airway immunity and decrease susceptibility to airway infections. Though the authors concluded that more studies are needed before these findings and interventions can be confirmed.

Abstract

Lung microbiota may affect innate immunity and treatment consequence in the obstructive sleep apnea (OSA) patients. Bronchoalveolar lavage fluid (BALF) was obtained from 11 OSA patients and 8 patients with other lung diseases as control, and used for lung microbiota profiling by PCR amplification and sequencing of the microbial samples. It was demonstrated that phyla of Firmicutes, Fusobacteria, and Bacteriodetes were relatively abundant in the lung microbiota. Alpha-diversity comparison between OSA and control group revealed that Proteobacteria and Fusobacteria were significantly higher in OSA patients (0.3863 ± 0.0631 and 0.0682 ± 0.0159, respectively) than that in control group (0.119 ± 0.074 and 0.0006 ± 0.0187, respectively, P < .05 for both phyla). In contrast, Firmicutes was significantly less in OSA patients (0.1371 ± 0.0394) compared with that in the control group (0.384 ± 0.046, P < .05). Comparison within a group (ß-diversity) indicated that the top 5 phyla in the OSA lung were Proteobacteria, Bacteroidetes, Firmicutes, Fusobacteria, and Acidobacteria, while the top 5 phyla in the control group were Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, and Acidobacteria. These findings indicated that lung microbiota in OSA is distinct from that of non-OSA patients. Manipulation of the microbiota may be an alternative strategy to augment airway immunity and to reduce susceptibility to airway infection.

Lifestyle medicine

Patient Centred Factors : Triggers/lower airway bacteria
Environmental Inputs : Microorganisms
Personal Lifestyle Factors : Not applicable
Functional Laboratory Testing : Saliva

Methodological quality

Allocation concealment : Not applicable
Publication Type : Journal Article ; Observational Study

Metadata

Nutrition Evidence keywords : Respiratory disease, Bronchoalveolar